

HTK38

Series Actuator

> GeMinG China LimiteD www.GeMingag.com

> > www.Gemingag.com

HTK38

Series Actuator

Product Category

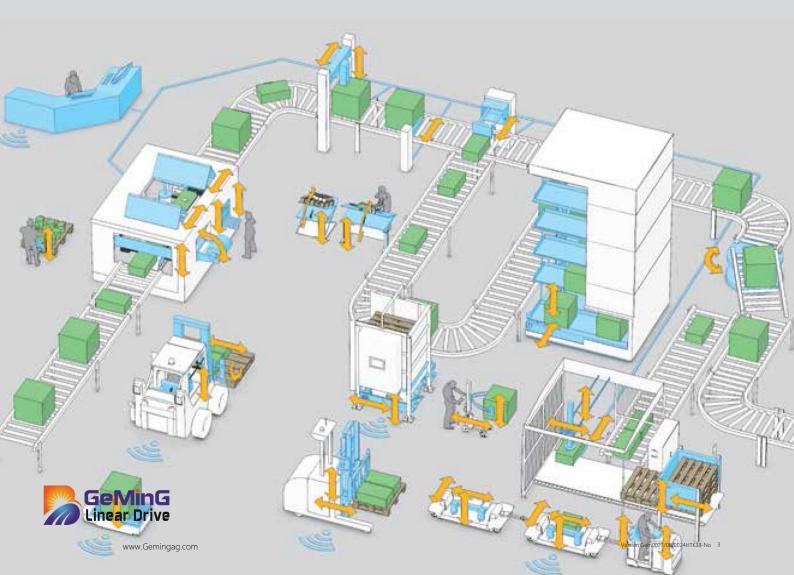
- 1. Industrial application
- 2. Automotive applications
- 3. Firefighting

HTK38 is one of the powerful products in the industrial application product line. The compact installation size allows the K38 to be installed in small space applications without worrying about affecting its performance. The applicable industries of HTK38 are construction machinery, ventilation systems, or food and beverage automation equipment...etc.

Functional Overview

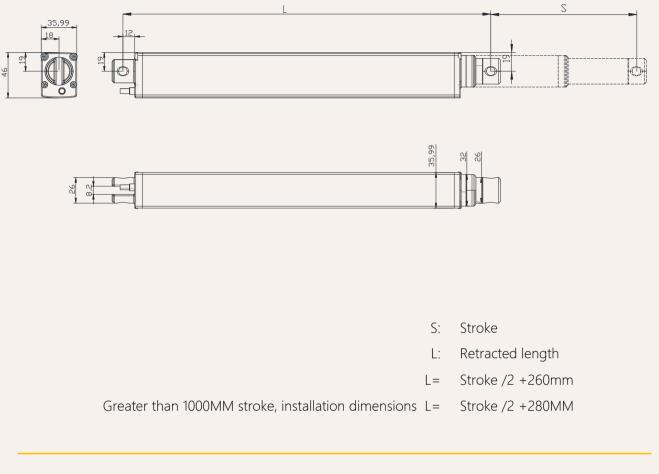
Voltage:

Maximum thrust (pull force): Slowest speed under load: Maximum speed under load: Minimum installation size: Dynamic lateral moment: Static lateral moment: color: Voice: Adaptable temperature range: Protection level: Screw selection:


Switch type: Signal options: Control options: safety certificate: 12V DC or 24V DC 1,500N 5 mm/s (load 1,500N) 100 mm/s (load 100N) Stroke /2 + 260mm 30Nm 40Nm Silver gray, black 52~58 DB -35°C ~ +75°C IP65 Trapezoidal screw, ball screw (default trapezoidal screw) Built-in limit switch, Hall sensor, active signal, passive signal, CE and RoHS regulations, Synchronous control, independent control Comply with ISO9001-2008,

Automation field applications

Actuator system provides smooth linear electric motion to the motor


Everything becomes easy to control and easy to integrate

Due to its small size, it is put into a straw cone blower. GeMinG actuators are usually classified with more complex hydraulic systems and actuators, are easy to install, and provide reliable and simple operation even in harsh conditions.

Drawings

Standard size MM

Installation angle (counterclockwise):

0 =0 Degrees

9 =90 Degrees

G=Adjust at will

HIK38 Series model

load and speed

Code	Rated load Thrust N	Pull N	Self-locking force static conditions static N	Rated load current A	Output speed no load 24V DC mm/s	Rated load 24V DC mm/s
Motor v	oltage (24V DC)					
A	1,500	1,500	2,000	4.1	6.0	4.8
В	950	950	1,000	4.1	12	9.5
С	400	400	400	4.1	26	21
D	200	200	200	3.8	53	42
E	100	100	100	3.8	100	85

Remark

1. The speed and current on the upper side are the materials that extend when pushed.

2. For 12V motor, the speed is about the same and the current is about 2 times higher.

3. The current & speed in the table are the test average values in the extension direction under thrust application.

4. The current & speed in the table and graph are the test average values of the GeMinG control box

configuration, and there is an error of about 10% depending on the control box model.

(The voltage is about 29V DC at no load, and drops to about 24V DC at rated load)

Stroke: minimum value \geq 20mm, please refer to the table below for the maximum value of load and stroke

load (N)	Maximum stroke (mm)
2,000	50-200
1,200	201-300
1,000	301-400
800	401-600
600	601-900

Remark:

Lateral moment Y direction = X*0.8

Static lateral moment = dynamic*2

Dynamic lateral moment (Nm)-X direction

stroke	S+230	S+250	
100-200	50	80	
300-500	40	60	Torque >
500-700	30	50	
700-900	20	40	

Lateral moment Y

Stroke installation size reference chart


HTK38 Series			stroke ± 2 (mm)			Install ± 2 (mm)			
strokeMM	100	200	300	400	500	600	700	800	900
Install MM	310	360	410	460	510	560	610	660	710
weight KG	1,5	1.8	2.1	2.4	2.7	3.0	3.3	3.6	3.9

Actuator wiring diagram

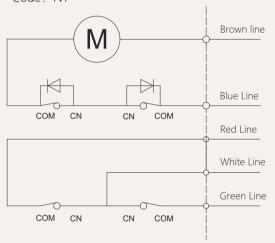
No signal feedback wiring diagram

Code: N

Wiring Instructions:

1) Brown lead: motor positive +

2] Blue lead: motor negative pole -


3] When the push rod is extended: the brown wire

is positive +, the blue wire is negative -

4) When the push rod is retracted: the blue line is positive +, the brown line is negative -

Actuator wiring diagram Built-in control module

Built-in controller wiring diagram Code: NY

Other signal descriptions

Wiring Instructions:

1] Brown lead: motor positive +

2] Blue lead: motor negative pole -

3] When the push rod is extended: white line + red line

4] When the push rod retracts: white line + green line

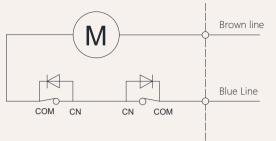
5] White line: control output common line.

6] White and red lines: stretch out,

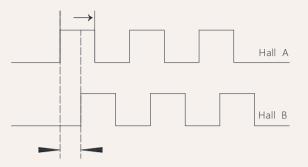
7] White and green lines: retract,

8) Wireless remote control, use wired control simultaneously.

Feedback signal	Description	Function	
Active endpoint feedback signal	Voltage with this model	When the push rod reaches the end point, a signal will be fed back. This signal will always exist and will disappear during the operation of the push rod.,	
Passive endpoint feedback signal	No voltage	When the push rod reaches the end point, it will feedback a signal. This signal always exists when the input power is not turned off. When the input power is turned off, the signal disappears. The signal will also disappear during the operation.	


Note: For other needs, please contact the GeMinG team

Signal feedback Hall sensor


Hall signal motor circuit diagram

Code: H

Schematic diagram of the internal circuit of the Hall signal

VCC Sensor VCC Hall A White line Hall B Yellow Line VCC Green Line Hall signal output waveform diagram

Wiring Instructions:

- 1] Brown lead: positive pole of motor +
- 2] Blue lead: negative pole of motor -
- 3] Red lead: VCC 5V voltage input +
- 4] Green lead: GND 5V voltage input -
- 5] White lead: Hall signal output A
- 6] Yellow lead: Hall signal output B

Notes:

- 1) Support dual-channel/single-channel Hall encoder
- 2) Current-consuming digital output
- 3) High-speed response frequency from: 0 KHz-100 KHz
- 4) Applicable temperature range:-40 °C~+125 °C

Characteristics	Symbol	Test conditions	MI	RE	Μ	Unit
Supply voltage	Vcc		3.5		24	V
Output saturation voltage	Vce/sat	Vcc=14V ; Ic=20mA		300	700	MV
Output leakage current	1 cex	Vce=14V ; Vcc=14V		<0	10	UA
Input voltage	1 ce	Vcc=20V ; Output open		1	10	М
Output fall time	R	Vcc=14V ; RL=820Ω ; CL=20pF		0.3	1.5	US

HTK38	- 24 - A 2 3	- 200 - 380 - O1 - O1 - ④ ⑤ ⑥ ⑦	0 - 1 - T - A - N - 07 8 9 10 11 12 13					
1	Product number	HTK38						
2	Voltage	12=12V DC, 24=24V DC						
3	Load(n)@Speed (mm/s)	See page 06	See page 06					
4	Stroke(mm)	See page 06						
5	Installation size(mm)	Note: Before selecting a size, please refer to the valid da	ta sheet! See page 05					
6	Upper type	O1 =Conventional ordinary type, hole diameter 8.5mm	O2 = Conventional ordinary type, hole diameter 10.5mm					
	<u>See page 13</u>	U1 = U-shaped, groove width 8mm, hole diameter 8.5mm	U2 = U-shaped, groove width 8mm, hole diameter 10.5mm					
		M1 = Type M, M14 thread, depth 20 mm	M2 = MType M, M16 thread, depth20 mm					
		T1 = T-type, M14 thread, length 20mm	T2 = T-type, M16 thread, length 20mm					
		L1 =L shape, width 8mm, aperture 8.5mm	L2 = L shape, width 8mm, aperture 10.5mm					
		G1 = Spherical bearing, bore 10mm, model GS10	G2 = Spherical bearing, bore 12mm, modelGS12					
(7)	lower type	O1 =Conventional ordinary type, hole diameter 8.5mm	O2 = Conventional ordinary type, hole diameter 10.5mm					
	See page 14	U1 = U-shaped, groove width 8mm, hole diameter 8.5mm	U2 = U-shaped, groove width 8mm, hole diameter 10.5mm					

HTK38 Model Description Selection Code Table

8	Installation angle (counterclockwise)	0 =0°, Degree		9 =90°, Degree		
9	Please refer to the	1 = Dare wire		2 = 01 Straight plug		
	outlet type	4 = Four-pin straight plu	ıg	6 = Six-pin straight plug		
		7 = Waterproof plug		0 = Customized		
10	Lead screw options	T = Trapezoidal screw (default preferred)		G= Ball screw rod		
(1)	Control method	A = No Control	NY =Integrated wired control NW=Integrated wireless control	NT = Synchronous control NC = CAN bus	D= Customized	
(12)	Signal output options	N = No	H =Hall sensor	D = Potentiometer	W=passive signal U=active signal	
(13)	Cable length	07 = 700mm 30 = 300mm	10 = 1000mm 40 = 4000mm	15 = 1500mm 70 = 7000mm	20= 2000mm 00 =Customized	