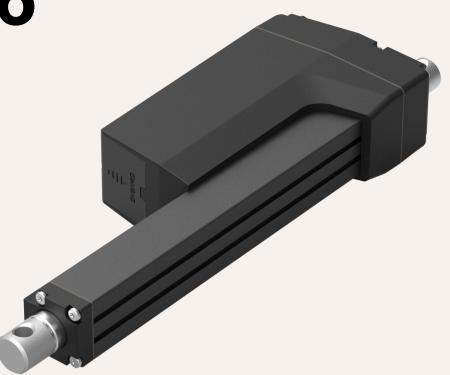


HTW76


Series Actuators

> GeMinG China LimiteD www.GeMingag.com

HTW76

Series Linear Actuators

Product Category

- 1, Industrial application
- 2、Military application
- 3、Agricultural machinery

HTW76 is a push rod specially designed for harsh industrial environments. It is especially suitable for some mechanical equipment with high consumption, such as agricultural machinery and industrial application equipment. If you're looking for an actuator that can be used in harsh industrial environments and meet strict specifications, smart electromechanical actuators feature on-board electronics that eliminate the need for a separate control system. With higher power up to 16 kN, it opens up more possibilities for hydraulic steering electric applications. HTW76 will be the best choice

Functional Overview

Voltage: Motor options: Maximum thrust (pull force): Slowest speed under load: Maximum speed under load: Minimum installation size: Dynamic lateral moment: Static lateral moment: color: Voice: Adaptable temperature range: Protection level: Screw selection: Switch type: Signal options: Control options: safety certificate:

High-strength metal zinc alloy gearbox and housing,

12V, 24V, 36V, 48V DC DC motor, brushless DC motor 16,000N / 14,000N 5.0mm/s (load 16,000N) 83 mm/s (load 1,000N) Stroke + 250mm 1,000Nm 800Nm Silver gray, black 60~68 DB -45°C ~ +75°C IP66 I ball screw, trapezoidal screw Built-in limit switch, Potentiometer, Hall sensor, endpoint signal Synchronous control, independent control, integrated control, CAN bus control, Comply with ISO9001-2008, CE and RoHS regulations,

Electrical conversion trend accelerates

Easier installation, better control and less complexity Installation is simpler, smaller and faster Easier control and greater precision

Electric execution requires fewer components and is faster and easier

to install than hydraulic or pneumatic systems

- Component costs are lower than comparable cost hydraulic or pneumatic systems
- Smaller footprint simplifies and speeds design

Easier control and greater precision

power is turned off

- Fully electrical components mean easier integration, fewer control components and less complexity
- Electric actuators react faster, more predictably, and won't drift when

Reduce energy costs

00

000

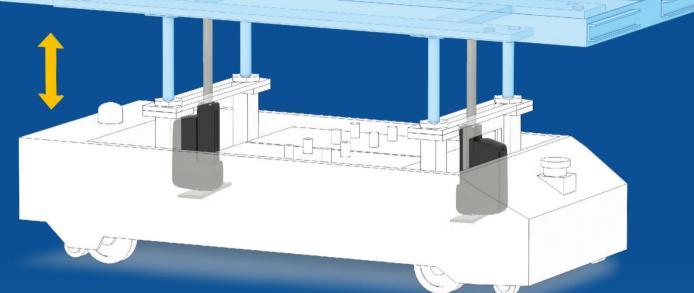
• Electric motors are inherently more efficient than pneumatic or hydraulic motors

• Consider potential parasitic power consumption without scaling up existing systems

•No need for any power supply to maintain load reducing power consumption

Reduce maintenance

•No use of hydraulic pumps, valves or hoses to reduce downtime, repair parts and replacement


• Stand-alone device electronics with smart onboard equipment requiring zero maintenance and increasing design flexibility for component placement

• Electric execution eliminates the cost and hassle associated with fluid maintenance

Linear Drive

Gel

Rear installation can be retrofitted with

flange installation

Electric linear actuators for automated guided vehicles, mobile equipment and industrial automation

height adjustment

Positioning adjustment

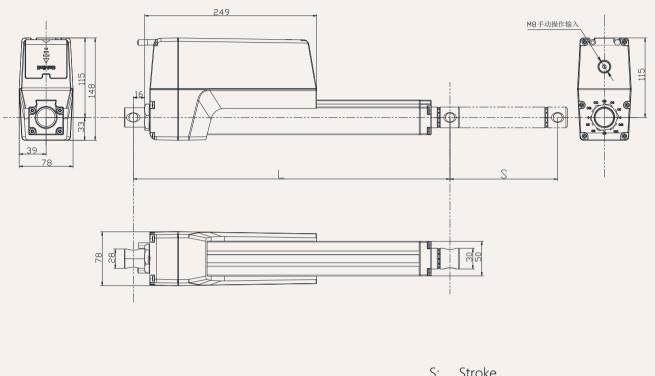
More compact design,

making it easier to install in small spaces,

Very suitable for designing different types of automation equipment,

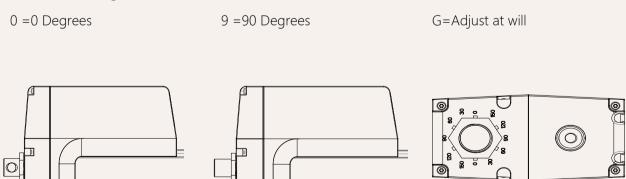
unmanned trucks and lifting equipment,

All while retaining many of the benefits that make it so popular!



www.Gemingag.com

HTW76 Series model


Drawings

Standard size MM

STICKE
Retracted length
Stroke +250mm
Stroke +300MM

Installation angle (counterclockwise):

HTW76 Series model

load and speed

Code	Rated load Thrust N	Pull N	Self-locking force static conditions static N	Rated load current A	Output speed no load 24V DC mm/s	Rated load 24V DC mm/s
Motor v	oltage (24V DC)					
А	16,000	14,000	25,000	18.3	5.0	4.0
В	14,000	14,000	25,000	18.3	7.0	6.0
С	11,000	11,000	15,000	18.3	9.0	7.0
D	7,100	7,100	7,100	18.3	15	12
E	6,500	6,500	6,500	18.3	19	15
F	4,200	4,200	4,200	18.3	29	23
G	3,600	3,600	3,600	18.3	33	26
Н	2,700	2,700	2,700	18.3	44	35
I	1,800	1,800	1,800	18.3	66	53
J	1,200	1,200	1,200	18.3	100	80
K	750	750	750	18.3	130	100

Remark

- 1. The speed and current on the upper side are the materials that extend when pushed.
- 2. For 12V motor, the speed is about the same and the current is about 2 times higher.
- 3. The current & speed in the table are the test average values in the extension direction under thrust application.
- 4. The current & speed in the table and graph are the test average values of the GeMinG control box
- configuration, and there is an error of about 10% depending on the control box model.
- (The voltage is about 29V DC at no load, and drops to about 24V DC at rated load)

Stroke: minimum value \geq 20mm, please refer to the table below for the maximum value of load and stroke

load (N)	Maximum stroke (mm)
16,000	50-200
15,000	201-300
12,000	301-400
7,000	401-600
6,000	601-900

Remark:

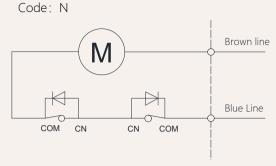
Lateral moment Y direction = X*0.8

Static lateral moment = dynamic*2

Dynamic lateral moment (Nm)-X direction

stroke	S+250	S+300	
100-200	200	300	
300-500	150	250	Torque X
500-700	100	200	
700-900	80	100	

Lateral moment Y


Stroke installation size reference chart

HTW76 Serie	25		stroke ± 2	(mm)		Install ± 2	(mm)		
strokeMM	100	150	200	250	300	350	400	450	500
Install MM	350	400	450	500	550	600	650	700	750
weight KG	8.5	8.8	9.1	9.4	9.7	10.1	10.5	10.9	11.5

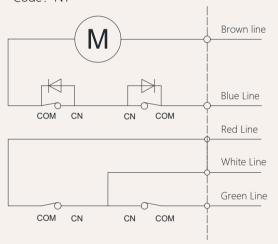
Actuator wiring diagram

No signal feedback wiring diagram

Wiring Instructions:

1] Brown lead: motor positive +

2] Blue lead: motor negative pole -


3) When the push rod is extended: the brown wire

is positive +, the blue wire is negative -

4) When the push rod is retracted: the blue line is positive +, the brown line is negative -

Actuator wiring diagram Built-in control module

Built-in controller wiring diagram Code: NY

Other signal descriptions

Wiring Instructions:

1] Brown lead: motor positive +

2] Blue lead: motor negative pole -

3] When the push rod is extended: white line + red line

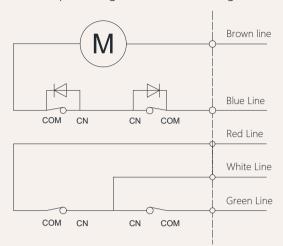
4] When the push rod retracts: white line + green line

5] White line: control output common line.

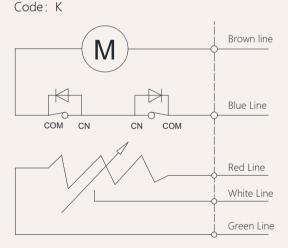
6] White and red lines: stretch out,

7] White and green lines: retract,

8) Wireless remote control, use wired control simultaneously.


Feedback signal	Description	Function
Active endpoint feedback signal	Voltage with this model	When the push rod reaches the end point, a signal will be fed back. This signal will always exist and will disappear during the operation of the push rod.,
Passive endpoint feedback signal	No voltage	When the push rod reaches the end point, it will feedback a signal. This signal always exists when the input power is not turned off. When the input power is turned off, the signal disappears. The signal will also disappear during the operation.

Note: For other needs, please contact the GeMinG team


Signal feedback Passive or active

Passive or active endpoint signal wiring diagram Code: N passive signal, Code: Y active signal

Signal feedback Potentiometer

Potentiometer wiring diagram

Potentiometer Configuration Form

 Transmission Code
 Limit travel range
 Resistance range J

 (See page 5)
 50-350MM
 50-200Stroke range5.0
 50-300Stroke range7.5

 A,C,E,G
 50-550MM
 50-200Stroke range5.17
 50-400Stroke range6.35

Note: Potentiometer resistance is 10K'Q, actual output resistance depends on specific stroke

Wiring Instructions:

- 1) Brown lead: positive pole of motor +
- 2] Blue lead: negative pole of motor -

3) When the push rod is extended: brown wire

positive pole +, blue wire negative pole -

4) When the push rod is retracted: blue wire

positive pole +, brown wire negative pole -

5] White wire: signal output common line.

6] White and red wire: extension end signal,

7] White and green wire: retraction end signal,

Wiring Instructions:

1] Brown lead: positive pole of motor +

2] Blue lead: negative pole of motor -

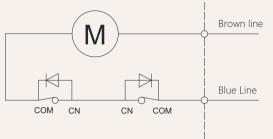
3] When the push rod is extended: brown wire positive pole +, blue wire negative pole -

4) When the push rod is retracted: blue wire positive pole +, brown wire negative pole -

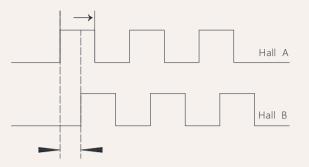
5] White and yellow leads: variable resistance signal output.

6] When the push rod is extended: red and white leads-resistance value gradually increases,

----red and yellow leads-resistance value gradually decreases.7) When the push rod is retracted: red and white leads-resistance value gradually decreases,


-----red and yellow leads-resistance value gradually increases.

Signal feedback Hall sensor


Hall signal motor circuit diagram

Code: H

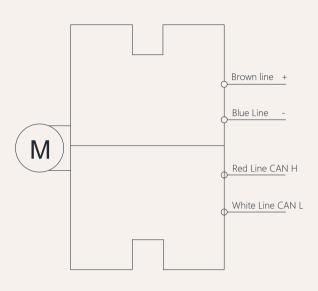
Schematic diagram of the internal circuit of the Hall signal

VCC Sensor VCC Hall A White line Hall B Yellow Line VCC Green Line Hall signal output waveform diagram

Wiring Instructions:

- 1] Brown lead: positive pole of motor +
- 2] Blue lead: negative pole of motor -
- 3] Red lead: VCC 5V voltage input +
- 4] Green lead: GND 5V voltage input -
- 5] White lead: Hall signal output A
- 6) Yellow lead: Hall signal output B

Notes:


- 1) Support dual-channel/single-channel Hall encoder
- 2) Current-consuming digital output
- 3) High-speed response frequency from: 0 KHz-100 KHz
- 4) Applicable temperature range:-40 °C~+125 °C

Characteristics	Symbol	Test conditions	MI	RE	Μ	Unit
Supply voltage	Vcc		3.5		24	V
Output saturation voltage	Vce/sat	Vcc=14V ; Ic=20mA		300	700	MV
Output leakage current	1 cex	Vce=14V ; Vcc=14V		<0	10	UA
Input voltage	1 ce	Vcc=20V ; Output open		1	10	М
Output fall time	R	Vcc=14V ; RL=820Ω ; CL=20pF		0.3	1.5	US

Signal feedback CAN bus

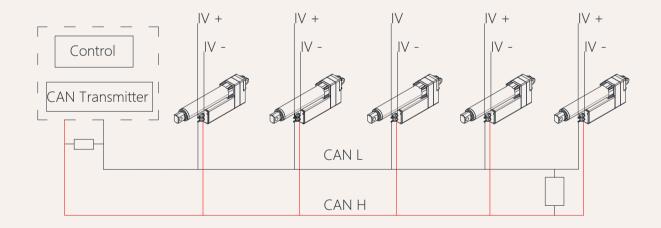
CANCommunication motor circuit diagram Code: CN

CAN Control instructions

Wiring Instructions:

- 1) Brown lead: positive pole of motor +
- 2] Blue lead: negative pole of motor -
- 3] Red lead: CAN H
- 5) White lead: CAN L

Note:


1. The brown\blue power cord cannot be reversed, otherwise the driver may be burned.

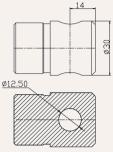
2. With CAN bus, excluding terminal resistor:

compliant with J1939

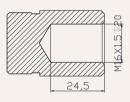
3. Speed: Baud rate: 500kbps

Communication wiring: shielded twisted pair Cable impedance: 120Ω (+10%)

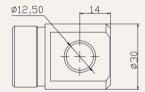
HTW76 Model Description Selection Code Table

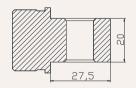

ГW76	- 24 A 2 3	*** ***	- O1 6	O1 ⑦	0 ⑧	1 ⑨	T (10)	A 11	N 12	07 <u>(13</u>)
Ŭ										
1	Product number	HTW76								
2)	Voltage	12=12V DC	24=24V DC		36=3	6V DC		48=48	BV DC	
3)	Load(n)@Speed (mm/s)	See page 06								
Ð	Stroke(mm)	See page 06								
5	Installation size(mm)	Note: Before select	ting a size, please refer	to the valid o	data shee	t! See pag	e 05			
5	Upper type	O1 =Ordinary type	, hole diameter12.5mm		O2 =	Ordinary	type, hole	diameter 1	3.5mm	
	See page 13		10.5mm, hole diameter						ameter 13.5	mm
		M1 = Type M, M16	thread, depth 20 mm		M2 =	MType M	, M18 threa	ad, depth2	20 mm	
		T1 = T-type, M16 tł	nread, length 20mm		T2 =	T-type, Mî	8 thread, l	ength 20n	nm	
		L1 =L shape, width	20mm, aperture 12.5m	m	L2 =	L shape, w	idth 20mm	n, aperture	13.5mm	
		G1 = Spherical bea	ring, bore 14mm, mode	el GS14	G2 =	Spherical	bearing, bo	ore 16mm,	modelGS16	5
7)	lower type	01 =Ordinary type	, hole diameter12.5mm		02 =	Ordinary	type, hole	diameter 1	3.5mm	
	See page 14		10.5mm, hole diameter	r 12.5mm					ameter 13.5	mm
		M1 = Type M, M16	thread, depth 20 mm		M2 =	MType M	, M18 threa	ad, depth2	20 mm	
			nread, length 20mm				8 thread, l			
		L1 =L shape, width	20mm, aperture 12.5m	m	L2 =	L shape, w	idth 20mm	n, aperture	13.5mm	
		G1 = Spherical bea	ring, bore 14mm, mode	el GS14	G2 =	Spherical	bearing, bo	ore 16mm,	modelGS16	5
3)	Installation angle (counterclockwise)	0 =0°, Degree		9 =90°, Degree						
9	Please refer to the	12 = 2 core bare w	vire		25 =	7 core bar	e wire			
	outlet type	4 = four-pin straig	ht plug		6 = S	ix-pin strai	ght plug			
		7 = waterproof plu	Ig		K = C	iustomizat	on			
0	Lead screw options	G=Ball screw (defa	ult preferred)		Τ = Τ	rapezoida	screw			
1)	Control method	A = No control	C = CAN bu	s	Y =In	tegrated wir	ed control	N=Inte	grated wireless	control
U	Control method	T = Synchronous c	control K = Customi	zed						
2)	Signal output options	N = None	H = Hall sen:	sor	D = F	otentiome	eter signal	U=act	ive signal	
J	Signal output options	W=passive signal	AN = CAN co	mmunication						
		07 =Cable length ().7 M 10 = Cable le	ength 1.0 M	15 =C	able lengt	h 1.5 M	20= C	able length	2.0 N
3	Cable length	30 =Cable length 3	3.0 M 40 =Cable le	ength 4.0M	50 =0	Cable leng	th 5.0 M	60= C	able length	6.0M
	WARN Comission of	70 =Cable length 7	7.0 M 70 =Cable le	ngth 8.0 M	90 =0	Cable leng	th 9.0 M		ustomizatic	
	www.Gemingag.com								.,	

HTW76 Attachment Description Selection Code Table

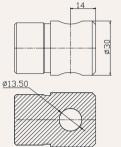

Extended upper form:

O1=No slot, aperture 12.5MM

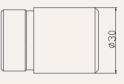


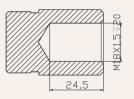

M1 = Type M, M16 thread, depth20 mm

L1 = L shape, width 20mm, aperture 12.5mm

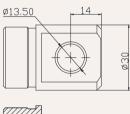


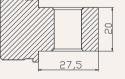
Power cord type:

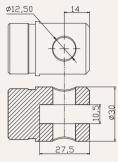

1 =Dare wire

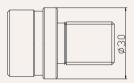

4

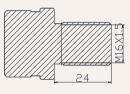
O2=No slot, aperture 13.5MM



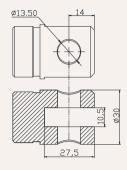

M2 = Type M, M18 thread, depth 20 mm

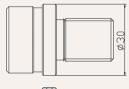

L2 = L shape, width 20mm, aperture 13.5mm




2 = 01 Straight plug

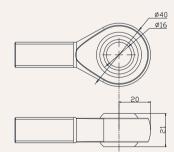
U1 = U-shaped, groove width 10.5mm, hole diameter 12.5mm


T1 = T-type, M16 thread, length 24mm

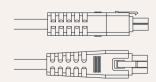


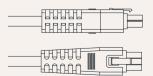
G1 = Spherical bearing, bore 12mm, model GS12

U2 = U-shaped, groove width 10.5mm, hole diameter 13.5mm



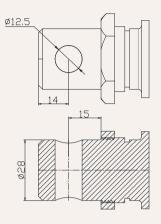
T2 = T-type, M18 thread, length 24mm

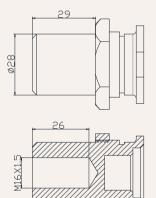



G2 = Spherical bearing, bore 14mm, model GS14

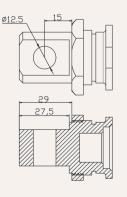
4 =Four-pin straight plug

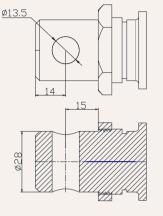
6 = Six-pin straight plug

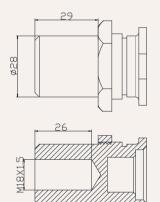


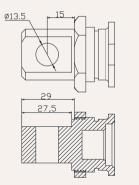

HTW76 Attachment Description Selection Code Table

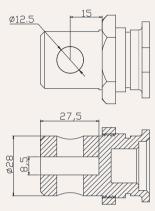
Tail lower end form :

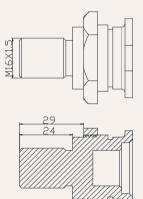

O1 = No slot, aperture 12.5mm

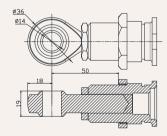

M1= Type M, M16 thread, depth 25 mm

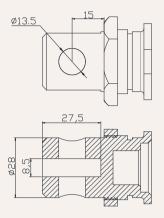

L1 = L shape, width 20mm, aperture 12.5mm


O2= No slot, aperture 13.5mm

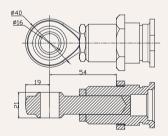

M2= Type M, M18 thread, depth 25 mm


L1 = L shape, width 20mm, aperture 13.5mm


U1 = U-shaped, groove width 10.5mm, hole diameter 12.5mm


T1 = T-type, M16 thread, length 24mm

G4 = Spherical bearing, bore 14mm, model GS14


U1 = U-shaped, groove width 10.5mm, hole diameter 13.5mm

T1 = T-type, M18 thread, length 24mm

G6 = Spherical bearing, bore 16mm, model GS16

